

Year 11 Homeostasis A	
 Topics covered: What is homeostasis How homeostasis is controlled in the body The human nervous system Reflex arcs 	 How it links to what has been studied before: Cells Cells Specialized cells Organization of the human body Practical skills
Key words: Coordination centres Effectors Homeostasis Receptors Reflex action Stimuli The brain The central nervous system (CNS) Neron Synaps	 Key skills: Students should be able to explain that homeostasis and be able to name the control systems in the body. Students should be able to explain how the structure of the nervous system is adapted to its functions. Students should be able to understand that the nervous system enables humans to react to their surroundings and to coordinate their behaviour. Students should be able to explain the various structures in a reflex arc. Students should be able to extract and interpret data from graphs, charts and tables, about the functioning of the nervous system. Students should be able to translate information about reaction times between numerical and graphical forms. plan and carry out an investigation into the effect of a factor on human reaction time (RP6)
Assessment focusEnd of topic test	Revision tips Senica
 Formative assessment half way through the topic RP - reaction time. 	 Educake Flash cards/ mind maps RAG checklist Practice exam questions

Why we study it: It is part of the AQA GCSE A science exam.

Mastery in this subject

Students should be able to expand and understand that Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. In order to do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes.

Year 11. Motion			
Topics covered:	How it links to what you have		How it links to what you will
Speed = Distance X Time	studied before:		study:
Distance Time graphs.			
Velocity Time graphs	KS2: Newton's Ideas are part		Links back to Forces. Also,
Acceleration	of the National Curriculum.		linking the idea of force
Newton's First law			creating motion in objects in
Newton's Second Law	KS3: D-T nd V-T graphs are		motors.
Newton's Third Law	first taught in year 7. Also the		
Stopping Distance	idea of Speed and how it is		Links to graph skills and
Momentum - Intro (HT)	calculated.		mathematical skills that are
Momentum - Conservation of			used throughout science:
Momentum (HT)			Plotting graphs, calculating
			gradients, using equations.
Key words:	Key skills:		1
Speed. Distance. Time. Units. A	cceleration.	ney on or	
Mass, Force, Line Graph, Gradie	ent, Resultant	Investigation: Use of ICT in Investigation skills	
Force, Push, Pull, Energy		e.g. data logger	rs as alternative ways to
		investigate spe	ed. Focus on Variables,
		methodology a	nd accuracy. KNowing how to
		write and discu	ss the ideas and how to use
		them in differe	nt scenarios.
		Numeracy: Calculator and use of key	
		equations and	now to rearrange them.
		upits	to convert and correctly laber
Assessment focus		Revision tips.	
Required practical activity 19: investigate the		Educake	- test yourself on areas that you have
effect of varying the force on the acceleration of an object of constant mass, and the effect of		done rev	ision on to see how well you
		understa	nd the knowledge.
		content a	and then test what you know.

varying the mass of an object on the acceleration produced by a constant force.	RAG checklist. What do you know and don't know.
End of Unit Test	 Practice exam questions, then check the answers and then improve your answers.

Why we study it: Force and motion are important parts of everyday life. As students study this unit, they will learn how these physical factors impact their lives and work. The lessons and activities will help students become aware of how we measure it, discuss and show it in scientific text and link this to real life concepts like stopping distance.

Mastery in this subject:

To master this subject you will need to be fluent when using equations (successfully use in unexpected situations and successfully rearrange them) on speed, acceleration, momentum and Newton's Law. You will be able to successfully use the science within science investigations and real life situations where motion is hard to explain and apply Numeracy to.

Year 11: Forces			
Topics covered:	How it links to what you		How it links to what you
Contact and non-contact	have studied l	pefore:	will study:
forces			
Weight, mass and gravity	KS2: Newton's Ideas are part		Foundations for motion, the
Resultant forces	of the National	Curriculum.	topic that follows.
Work done		first to us be in	Links to magnetism and the
Elasticity	KS3: Forces are	ants should be	motor effect. Links to
Springs and Hooke's Law	able to describe	e balanced and	chemistry with electrostatic
Moments and pressure	unbalanced for	ces. They have	forces and collision theory.
	also practiced u	sing some of	
	the equations.	1	
Key words:		Key skills:	
Vector, scalar, weight, mass, i	resultant	<u>Maths skills</u>	
force, free-body diagram, dire	ctly	Calculating we	eight and mass.
proportional, equilibrium, wo	rk done,	Determining r	esultant force.
elastic, limit of proportionality	y, moment,	Drawing to sca	ale.
pressure, lever, gear, fluid, ati	mospheric	Calculating wo	ork done.
pressure, upthrust.		Drawing Force	e/extension graphs.
		Calculating mo	oments and pressure.
		Science Skills	
		Collecting valie	d data.
		Removing erro	ors.
		Analysing resu	ilts.
Assessment focus		Revision tips	
Require Practical: Investigation	g springs.	Learn the	equations for:
		o Force	e and extension

End of unit test.	 Weight
	 Moments
	 Pressure
	• What is the limit of proportionality for
	springs?
	• Practice drawing scale diagrams and free-
	body diagrams
	• Describe the difference between vectors and
	scalars.

Why we study it:

Force and motion are important parts of everyday life. As students study this unit, they will learn how these physical factors impact their lives and work. The lessons and activities will help students become aware of how we measure it, discuss and show it in scientific text and link this to real life concepts like work done and diving.

Mastery in this subject

To master this subject you will need to be fluent when using equations; successfully use and rearrange them in unexpected situations. You will also be able to use two equations to solve one problem. You will be able to successfully use your understanding of investigations to apply to real life situations.

Year 11: Rates of reaction			
Topics covered:	How it links to what you		How it links to what you
Factors affecting rates of	have studied before:		will study:
chemical reactions.	In KS2 we learnt that		Understanding that states
Concentration, pressure,	materials exist in different		of matter can change in a
surface area, Temperature,	states. We lea	rnt that some	material, and that energy in
and catalysts.	changes are re	versible	reactions can affect the rate
	changes, and s	ome are	are starting points for this
	irreversible ch	anges.	topic.
	KS3 We learnt	that chemical	
	reactions and	chemical	
	energy can be	observed.	
Key words: Energy, Reactants, Products, Key skills		Key skills:	
Activation energy, Endothermic reaction,		<u>Maths skills</u>	
exothermic, Reversible reaction, Collision Measu		Measuring rea	ctions, and time.
theory, Reactant particles, Collision, Measurin		Measuring dif	ferent states of matter.
Activation energy, Mass, Relative formula		Calculating rate of reaction.	
mass, Volume, Burette, Gradient, Catalyst, Dete		Determining e	nd of reaction.
Concentration, Enzyme, Frequency, Drawing rate		Drawing rates	of reaction graphs.
Reaction pathway, Reaction profile,		<u>Science Skills</u>	
Solution, Surface area, Tangent,		Collecting valid data.	
Temperature, Volume,		Removing erro	ors.

	Analysing results	
Assessment focus Required practical- Investigate a change of concentration affects the rate of reaction involving measuring gas produced and a method involving a change in colour or turbidity. End of Topic test	 Revision tips Educake - quiz based revision Seneca - Exam style questions Flash cards/mind maps RAG Topic checklists Practice Exam questions. Study capture - 5 mins at the end of day recapping what you covered in the lesson 	
Why we study it: Chemical reactions can occur at vastly different rates. Whilst the reactivity of chemicals is a significant factor in how fast chemical reactions proceed, there are many variables that can be manipulated in order to speed them up or slow them down. Chemical reactions may also be reversible and therefore the effect of different variables needs to be established in order to identify how to maximise the yield of desired product. Understanding energy changes that accompany chemical reactions is important for this process. In industry, chemists and chemical engineers determine the effect of different variables on reaction rate and yield of product. Whilst there may be compromises to be made, they carry out optimisation processes to ensure that enough product is produced within a sufficient time, and in an energy-efficient way.		

Students will be able to interpret results from a reaction graph. They will be able to identify the units of rates of reaction. Students will also be able identify that rates of reaction indicate time and volume, or mass.

