Curriculum Sequencing - Year 10

| Unit: 10.1a PROPORTION |
| :--- | :--- | :--- | :--- | :--- |

Unit: 10.1b PROPORTION		RATIO AND PROPORTION		
	WHAT WE ARE STUDYING Direct and inverse proportion Rates of Change Percentage change incl. repeated percentage change			
LINKS TO EARLIER TOPICS Ratios; fractions; scale diagrams; surface area and volume; speed-distance-time; percentage changes	WHAT IT WILL HELP US LEARN Solving geometrical and repeated proportional change problems using ratios			
Key Skills:		R	A	G
Solving direct proportion word problems Solving inverse proportion word problems Currency conversion Interpreting direct proportion equations Constructing direct proportion equations Interpreting inverse proportion equations Constructing inverse proportion equations Graphs of direct and inverse proportion Percentage change without a calculator Percentage change with a calculator Finding original values in percentage calculations Finding the percentage an amount has been changed by Simple interest calculations Compound interest calculations Growth and decay				
WHY WE STUDY THIS to develop proportional thinking which links to real-life problems	KEY WORDS direct proportion, inverse		ARX	
YOU WILL USE THIS IN... Banking, Finance, Mathematics, Bakers, Real estate workers, Stock brokers, Weather forecasting, manufacturing, construction, healthcare, production, sports studies, environmental studies, banking, investments, analyst.	proportion, conversion graphs, multiplier, reverse percentage, compound interest, simple interest, growth decay		1, U	

Unit: 10.2 SEQUENCES		ALGEBRA	
	WHAT WE ARE STUDYING Finding nth term of a sequence Using triangular, square, cube and Fibonacci numbers in sequences		
LINKS TO EARLIER TOPICS Model situations with formulae, generating sequences.	WHAT IT WILL HELP US LEARN Quadratic sequences and recursive formulae (iteration)		
Key Skills:		R ${ }^{\text {A }}$	G
Term-to-term rules Substituting into position-to-term rules Position-to-term rules for arithmetic sequences Position-to-term rules for sequences of patterns Special sequences Position-to-term rules for geometric sequences Fibonacci style sequences			
WHY WE STUDY THIS Understanding different relationships and how they can be modelled.	KEY WORDS term-to-term rule, linear, rule, sequence,	SPARX U213 U530	
YOU WILL USE THIS IN... Engineers, natural scientists, software developers, tilers, food services	arithmetic sequence, geometric sequence, nth term, common difference, pattern		

10.4a NUMERACY AND ACURACY		NUMBER		
	WHAT WE ARE STUDYING Rounding to a required degree of accuracy Higher: Working with upper and lower bounds Calculating with roots and indices Estimating powers and roots			
LINKS TO EARLIER TOPICS Place value, Rounding, Measurements, Recognising and using roots	WHAT IT WILL HELP US LEARN Accuracy, Recursive formulae (Iteration), Index laws, exact trig values, surds			
Key Skills:		R	A	G
Rounding integers Rounding decimals Rounding integers using significant figures Rounding decimals using significant figures Estimating calculations Finding error intervals Finding bounds for calculations (H) Truncating decimals				

Finding error intervals for truncated numbers Calculating with roots and powers Estimating roots and powers (H) Fractional indices (1/a) (H) Fractional indices (a/b) (H) Using standard form with positive indices Using standard form with negative indices	KEY WORDS			
WHY WE STUDY THIS	truncate, significant figures, rounding, cube			
	number, square number, index notation, square	U480, U298		
Understanding how numbers can be	root, cube root, exponent, quotient, product	U225, U657		
represented in context		U587, U108,		
YOU WILL USE THIS IN...		U301, U851		
		U299 (H)		
Science, Astronomy, Engineering, Science,		U985 (H)		
Mathematics, Engineering, Computer		U772 (H)		
programmers, structural engineers		U235, U694		
		U330, U534		

10.4b NUMERACY AND ACURACY		NUMBER		
	WHAT WE ARE STUDYING Calculating in standard form Calculating with fraction Calculating with surds (higher only)			
LINKS TO EARLIER TOPICS Index laws, rounding, calculations with fractions	WHAT IT WILL HELP US LEARN Calculating in standard form, understand and use units of length, time, mass, rationalising surds, exact trig values			
Key Skills: Multiplying and dividing numbers in standard form Adding and subtracting numbers in standard form Standard form with a calculator Finding fractions of shapes Constructing fractions Finding equivalent fractions Simplifying fractions Ordering fractions Adding and subtracting fractions Converting between mixed numbers and improper fractions Adding and subtracting mixed numbers Ordering fractions and mixed numbers Multiplying fractions Multiplying with mixed numbers Dividing fractions Dividing with mixed numbers Problem solving: Fractions and mixed numbers Multiplying and dividing surds (H) Simplifying surds (H) Adding and subtracting surds (H) Expanding brackets with surds (H) Rationalising denominators containing a single term (H) Rationalising denominators containing two terms (H)		R	A	G

WHY WE STUDY THIS

Understanding how numbers can be represented in context
YOU WILL USE THIS IN...

Science, Mathematics, Engineering, Astronomy, Architecture

KEY WORDS
SPARX

Standard index form simplest form
U330
equivalent fraction
U534
improper fraction non-unit fraction reciprocal, Surd, U264 Simplify, Rationalise

10.5b LINEAR ALGEBRA		ALGEBRA		
	WHAT WE ARE STUDYING Modelling real-life situations as expressions, formulae or equations Finding the equations of straight lines Modelling situations as simultaneous equations			
LINKS TO EARLIER TOPICS Expanding brackets, collecting like terms, indices, surds	WHAT IT WILL HELP US LEARN Accuracy with algebraic problems			
Key Skills:		R	A	G
Write and solve an equation to a worded question Express a situation or procedure as a formula Substitute values into a formula Rearrange a formula Identify the gradient and y-intercept from a graph and from $y=m x+c$ Find the gradient of a line given two points on the line Write the equation of a line given a point on the line and the gradient Identify parallel lines by recognising their gradients Write an equation for a line that is parallel Identify perpendicular lines by recognising their gradients (H) Write an equation for a line that is perpendicular to it (H) Solve simple simultaneous linear equations by substitution Solve simultaneous linear equations by elimination -no manipulation Solve simultaneous linear equations by elimination when one equation must be manipulated Solve simultaneous linear equations when I need to manipulate both equations. Translate problems into a pair of simultaneous linear equations. Interpret the solutions to a pair of simultaneous equations in context. Solve or estimate solutions to simultaneous equations graphically.				
WHY WE STUDY THIS Understand how we can use algebra to model graphs	KEY WORDS Expression, equations, solve, formula, substitute, subject, intercept, coordinate,			$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{~J} 25 \\ & \mathrm{~J} 505 \\ & \mathrm{~J} 789 \end{aligned}$
YOU WILL USE THIS IN... Financial analyst, computer programmer, research scientist, engineer, architect and builder, Budget analyst, auditors, accountants, insurance underwriters, loan officers	gradient, perpendicular, parallel, Linear, simultaneous equations, graph			$\begin{aligned} & \mathrm{J} 899 \\ & \mathrm{~J} 315 \\ & \mathrm{~J} 477 \\ & \mathrm{~J} 377 \\ & \text { (H) } \\ & 0 \\ & \mathrm{~J} 547 \\ & 6 \end{aligned}$

10.6a FUNCTIONS		ALGEBRA		
	WHAT WE ARE STUDYING Working with number machines, function notation and composite and inverse functions Exact trigonometric values			
LINKS TO EARLIER TOPICS Dividing, formulae, manipulating expressions, Pythagoras and trigonometry, surds, fractions	WHAT IT WILL HELP US LEARN Composite and inverse functions, Solving trigonometry problems without a calculator			
Key Skills:		R	A	G
Complete a number machine given a function Write the function given a number machine Use inverse operations to find the input of a number machine. Express a function using function notation Substitute values into a function given in function notation Solve equations given using function notation Understand and use function notation to find the value of composite functions (H) Write expressions for inverse functions using function notation (H) Recall the exact values of \sin , \cos and tan for $0,30,45,60$, and 90 degrees Solve problems involving the exact values of \sin, \cos and tan for $0,30,45,60$, and 90 degrees				

WHY WE STUDY THIS

Understanding how functions can be used to develop our understanding of algebra, Understanding the links to trigonometric graphs
YOU WILL USE THIS IN...

Software designer, web development, data science, UX/UI design, architects, surveyors, astronauts, physicists, engineers

KEY WORDS

Function, inverse operation, relationship, substitute, solve, Trigonometric function, tangent, sine, cosine, right angle

10.6c FUNCTIONS		ALGEBRA		
	WHAT WE ARE STUDYING Finding approximate solutions from graphs and sketching translations and reflections of functions			
LINKS TO EARLIER TOPICS Plotting graphs, quadratic, cubic, reciprocal, exponential	WHAT IT WILL HELP US LEARN Model real-life problems using graphs			
Key Skills:		R	A	G
Plot and interpret graphs of reciprocal functions in context Plot and interpret graphs of exponential functions in context Plot a distance-time graph in context Interpret a distance-time graph in context Recognise a translation of a function (H) Translate a function in both the x and y direction given directions in words or vector form (H) Understand a translation in function notation (H) Write down the function of the translation given the original function (H) Reflect functions in the x - and y-axis (H) Recognise a reflection (H) Find the function of a reflection given the original function (H) Use function notation, $-f(x)$ and $f(-x)$, to represent reflections (H) Sketch the image of a function when asked to perform two transformations (H)				
WHY WE STUDY THIS How different functions are represented and how they relate to real-life situations	KEY WORDS Function, cubic, x-axis, y-axis, quadratic, table of values, graph, table, reciprocal,	$\begin{aligned} & \text { SPARX } \\ & \text { U652 } \\ & \text { U638 } \end{aligned}$		
YOU WILL USE THIS IN... Aeronautical engineer, financial analyst, experimental physicist, computer programmer, research scientist, statistical analyst	tangent, sine, cosine	U862 U896 U403 U914 U462 U966		

10.7A CIRCLES (Higher only)		GEOMETRY		
	WHAT WE ARE STUDYING Circle Theorems			
LINKS TO EARLIER TOPICS Circle properties, area and circumference of circles and sectors	WHAT IT WILL HELP US LEARN Geometrical reasoning and setting up proofs			
Key Skills:		R	A	G
Identify the circumference, radius and diameter on a circle, an arc, a chord, a tangent, a sector and segment on a circle Understand the difference between major arcs, segments and sectors and minor arcs, sectors and segments				

Construct a circle and draw a radius, diameter, chord or tangent on it
Identify and use the circle theorem that states:
Angles in the same sector are equal
Angles subtended by an arc at the centre of the circle are twice the angle subtended at the circumference
The angle subtended at the circumference in a semi-circle is a right angle
Opposite angles in a cyclic quadrilateral are equal
The perpendicular from the centre to a chord bisects the chord.
A tangent at any point of a circle meets a radius at 90 degrees
Tangents from an external point are equal in length
Alternate segment circle theorem
Construct simple proofs of circle theorems
Solve problems that involve a combination of circle theorems within the same problem
Recall and state, using correct mathematical terms, each of the circle theorems
Construct an inscribed polygon by equal divisions of a circle

107B CIRCLES (Higher only)		GEOMETRY		
	WHAT WE ARE STUDYING Using the equation of a circle and finding the equation of the tangent			
LINKS TO EARLIER TOPICS Pythagoras, equations of parallel and perpendicular lines	WHAT IT WILL HELP US LEARN Finding the equation of a tangent			
Key Skills:		R	A	G
Draw the graph of a circle given its equation Identify the equation of a circle from its graph Solve simultaneous equations to identify the points of intersection between a line and a circle Calculate the length of chord between two points on a circumference Find the gradient of a radius when given the centre and a point on the circumference Find the gradient of a tangent, given the gradient of the radius Find the equation of a tangent through a point on the circumference in the form of $y=m x+c$ when given the centre of a circle				

WHY WE STUDY THIS
Develop and algebraic link to a geometrical problem
YOU WILL USE THIS IN...

Engineer, mathematician, architect,

KEY WORDS

Simultaneous equation, chord, line, quadratic, equation, U567 intersection, radius, graph, circle, tangent, gradient

10.8a TRIGONOMETRY		GEOMETRY		
	WHAT WE ARE STUDYING Trigonometry in right-angled triangles			
LINKS TO EARLIER TOPICS Pythagoras, sin, cos, tan	WHAT IT WILL HELP US LEARN Further trigonometry			
Key Skills:		R	A	G
Use Pythagoras' Theorem in 2-D to find miss Use Pythagoras' Theorem in 3-D to find miss Use the sine ratio to find missing lengths in r Use the sine ratio to find missing angles in rig Use the cosine ratio to find missing lengths in Use the cosine ratio to find missing angles in Use the tangent ratio to find missing lengths Use the tangent ratio to find missing angles in Identify when to use Pythagoras' Theorem Use Pythagoras' Theorem accurately to find Identify which trigonometric ratio or ratios is Use \sin , \cos or tan to accurately solve proble Identify when to use Pythagoras' Theorem and problems involving bearings	g lengths of right angled triangles g lengths ht-angled triangles t-angled triangles right-angled triangles ight-angled triangles right-angled triangles right-angled triangles issing lengths in right-angled triangles appropriate for use in solving a given problem s d which trigonometric ratio(s) to use in order to solve			
WHY WE STUDY THIS Develop and advanced understanding of trigonometry	KEY WORDS Pythagoras' Theorem, hypotenuse, sine, cosine, tangent, right-angle		$\begin{aligned} & \text { PARX } \\ & \text { J605 } \\ & \text { J283 } \end{aligned}$	
YOU WILL USE THIS IN... Architects, surveyors, astronauts, physicists, engineers				

10.8B TRIGONOMETRY (Higher only)	GEOMETRY	
	WHAT WE ARE STUDYING	
LINK Pythagoras, sin, cos, tan Cosine Rule and area of a triangle	WHAT IT WILL HELP US LEARN Surther trigonometry for non-right-angled triangles	

Key Skills:	R	A	G
Use the sine rule to find a missing angle in a triangle that is not right-angled Use the sine rule to find a missing side in a triangle that is not right-angled Use the cosine rule to find a missing angle in a triangle Use the cosine rule to find a missing side in a triangle Use the sine and cosine rules to solve problems involving triangles that are not right-angled Use the sine and cosine rule to solve problems involving bearings Find the area of a triangle using trigonometry Solve problems involving the area of a triangle using trigonometry. Identify similar shapes Use trigonometry to solve problems with similar shapes Solve problems involving trigonometry in similar shapes Use bearings to specify direction Make scale drawings using bearings Work out bearings from a given point			
WHY WE STUDY THIS			

10.10.9 MEASURES AND UNITS		GEOMETRY	
	WHAT WE ARE STUDYING Converting between units of measure and compound measures		
LINKS TO EARLIER TOPICS Time, km to miles, length, area, mass and capacity	WHAT IT WILL HELP US LEARN Convert compound units and understand the S.I. system		
Key Skills:		R ${ }^{\text {R }}$	G
Convert between metric units of length and between metric and imperial units of length Convert between metric units of area and between metric and imperial units of area Recognise the difference between a volume and a capacity Convert between metric units of volume and capacity and between metric and imperial units of volume and capacity Convert between units of time Explain what is meant by a compound measure Convert from one metric compound measure to another Convert some metric compound measures to imperial compound measures Describe the context from the compound measures used Explain my results in context from calculations using compound measures			
WHY WE STUDY THIS	KEY WORDS	SPAR	
YOU WILL USE THIS IN... Measurement technician, instrumentation technician, controls	Gallon, kilogram, weight, milli-, centi-kilometre, square millimetre, hour, capacity, litre, metre, second, area, ounce, distance, imperial unit, length, yard, square metre,		

engineer, precision instrument and	convert, pint, mass, inch, pound, unit, gram, volume, day,	U248
equipment repair technician,	year, foot	U468
meteorologist,		U663
		U497
		U151
		U256
		U910
		U527
		U842

Unit: 10.10a QUADRATIC EQUATIONS		ALGEBRA		
	WHAT WE ARE STUDYING Solving quadratic equations Understanding roots, intercept and turning points of quadratic functions			
LINKS TO EARLIER TOPICS Factorising, substituting, plotting	WHAT IT WILL HELP US LEARN Understanding of solving quadratic equations in different contexts			
Key Skills:		R	A	G
Recognise quadratic equations Solve a quadratic equation by factorising Solve a quadratic equation by factorising when it is necessary to rearrange the equation Find approximate solutions to a quadratic equation from a graph. Complete the square of a quadratic expression (H) Solve a quadratic equation by completing the square (H) Solve an equation using the quadratic formula when the equation is of the form $a x^{2}+b x+c=0(\mathrm{H})$ Rearrange an equation when necessary in order to find the values of a, b and $c(H)$ Use the quadratic formula to solve an equation that has been rearranged (H) Write and solve a quadratic equation in context (H) Identify the y-intercept of a quadratic function Interpret the y-intercept of a quadratic function Interpret the x intercepts on a graph Interpret the roots of a quadratic function given a graph in context Find the x-intercepts of a quadratic function by setting $y=0$ Explain what the turning point of a quadratic function represents Interpret the turning point on a graph given in context Find the turning point of a quadratic function by completing the square (H) Sketch a quadratic function by finding the y-intercept, roots, and turning point				
WHY WE STUDY THIS To develop links to earlier learning and move towards more abstract	KEY WORDS Solve, quadratic, factorise, product, solution, roots, parabola		(H)	
YOU WILL USE THIS IN... Engineers, mathematicians, physicists, astronomers, military and policing, risk analysts				

